1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
#define DATASEGM(p) { 0xFFFF, SEGG|SEGB|(0xF<<16)|SEGP|SEGPL(p)|SEGDATA|SEGW }
#define EXECSEGM(p) { 0xFFFF, SEGG|SEGD|(0xF<<16)|SEGP|SEGPL(p)|SEGEXEC|SEGR }
#define TSSSEGM(b,p) { ((b)<<16)|sizeof(Tss),\
((b)&0xFF000000)|(((b)>>16)&0xFF)|SEGTSS|SEGPL(p)|SEGP }
Segdesc gdt[NGDT] =
{
[NULLSEG] { 0, 0}, /* null descriptor */
[KDSEG] DATASEGM(0), /* kernel data/stack */
[KESEG] EXECSEGM(0), /* kernel code */
[UDSEG] DATASEGM(3), /* user data/stack */
[UESEG] EXECSEGM(3), /* user code */
[TSSSEG] TSSSEGM(0,0), /* tss segment */
};
static void
taskswitch(ulong pdb, ulong stack)
{
Tss *tss;
tss = m->tss;
tss->ss0 = KDSEL;
tss->esp0 = stack;
tss->ss1 = KDSEL;
tss->esp1 = stack;
tss->ss2 = KDSEL;
tss->esp2 = stack;
tss->cr3 = pdb;
putcr3(pdb);
}
/*
* On processors that support it, we set the PTEGLOBAL bit in
* page table and page directory entries that map kernel memory.
* Doing this tells the processor not to bother flushing them
* from the TLB when doing the TLB flush associated with a
* context switch (write to CR3). Since kernel memory mappings
* are never removed, this is safe. (If we ever remove kernel memory
* mappings, we can do a full flush by turning off the PGE bit in CR4,
* writing to CR3, and then turning the PGE bit back on.)
*
* See also mmukmap below.
*
* Processor support for the PTEGLOBAL bit is enabled in devarch.c.
*/
static void
memglobal(void)
{
int i, j;
ulong *pde, *pte;
/* only need to do this once, on bootstrap processor */
if(m->machno != 0)
return;
if(!m->havepge)
return;
pde = m->pdb;
for(i=512; i<1024; i++){ /* 512: start at entry for virtual 0x80000000 */
if(pde[i] & PTEVALID){
pde[i] |= PTEGLOBAL;
if(!(pde[i] & PTESIZE)){
pte = KADDR(pde[i]&~(BY2PG-1));
for(j=0; j<1024; j++)
if(pte[j] & PTEVALID)
pte[j] |= PTEGLOBAL;
}
}
}
}
void
mmuinit(void)
{
ulong x, *p;
ushort ptr[3];
memglobal();
m->tss = malloc(sizeof(Tss));
memset(m->tss, 0, sizeof(Tss));
m->tss->iomap = 0xDFFF<<16;
/*
* We used to keep the GDT in the Mach structure, but it
* turns out that that slows down access to the rest of the
* page. Since the Mach structure is accessed quite often,
* it pays off anywhere from a factor of 1.25 to 2 on real
* hardware to separate them (the AMDs are more sensitive
* than Intels in this regard). Under VMware it pays off
* a factor of about 10 to 100.
*/
memmove(m->gdt, gdt, sizeof gdt);
x = (ulong)m->tss;
m->gdt[TSSSEG].d0 = (x<<16)|sizeof(Tss);
m->gdt[TSSSEG].d1 = (x&0xFF000000)|((x>>16)&0xFF)|SEGTSS|SEGPL(0)|SEGP;
ptr[0] = sizeof(gdt)-1;
x = (ulong)m->gdt;
ptr[1] = x & 0xFFFF;
ptr[2] = (x>>16) & 0xFFFF;
lgdt(ptr);
ptr[0] = sizeof(Segdesc)*256-1;
x = IDTADDR;
ptr[1] = x & 0xFFFF;
ptr[2] = (x>>16) & 0xFFFF;
lidt(ptr);
/* make kernel text unwritable */
for(x = KTZERO; x < (ulong)etext; x += BY2PG){
p = mmuwalk(m->pdb, x, 2, 0);
if(p == nil)
panic("mmuinit");
*p &= ~PTEWRITE;
}
taskswitch(PADDR(m->pdb), (ulong)m + BY2PG);
ltr(TSSSEL);
}
ulong*
mmuwalk(ulong* pdb, ulong va, int level, int create)
{
ulong pa, *table;
/*
* Walk the page-table pointed to by pdb and return a pointer
* to the entry for virtual address va at the requested level.
* If the entry is invalid and create isn't requested then bail
* out early. Otherwise, for the 2nd level walk, allocate a new
* page-table page and register it in the 1st level.
*/
table = &pdb[PDX(va)];
if(!(*table & PTEVALID) && create == 0)
return 0;
switch(level){
default:
return 0;
case 1:
return table;
case 2:
if(*table & PTESIZE)
panic("mmuwalk2: va %luX entry %luX\n", va, *table);
if(!(*table & PTEVALID)){
pa = PADDR(xspanalloc(BY2PG, BY2PG, 0));
*table = pa|PTEWRITE|PTEVALID;
}
table = KADDR(PPN(*table));
return &table[PTX(va)];
}
}
static Lock mmukmaplock;
int
mmukmapsync(ulong va)
{
Mach *mach0;
ulong entry, *pte;
mach0 = MACHP(0);
ilock(&mmukmaplock);
if((pte = mmuwalk(mach0->pdb, va, 1, 0)) == nil){
iunlock(&mmukmaplock);
return 0;
}
if(!(*pte & PTESIZE) && mmuwalk(mach0->pdb, va, 2, 0) == nil){
iunlock(&mmukmaplock);
return 0;
}
entry = *pte;
if(!(m->pdb[PDX(va)] & PTEVALID))
m->pdb[PDX(va)] = entry;
// if(up && up->mmupdb){
// ((ulong*)up->mmupdb->va)[PDX(va)] = entry;
// mmuflushtlb(up->mmupdb->pa);
// }
// else
mmuflushtlb(PADDR(m->pdb));
iunlock(&mmukmaplock);
return 1;
}
ulong
mmukmap(ulong pa, ulong va, int size)
{
Mach *mach0;
ulong ova, pae, *table, pgsz, *pte, x;
int pse, sync;
mach0 = MACHP(0);
if((mach0->cpuiddx & 0x08) && (getcr4() & 0x10))
pse = 1;
else
pse = 0;
sync = 0;
pa = PPN(pa);
if(va == 0)
va = (ulong)KADDR(pa);
else
va = PPN(va);
ova = va;
pae = pa + size;
ilock(&mmukmaplock);
while(pa < pae){
table = &mach0->pdb[PDX(va)];
/*
* Possibly already mapped.
*/
if(*table & PTEVALID){
if(*table & PTESIZE){
/*
* Big page. Does it fit within?
* If it does, adjust pgsz so the correct end can be
* returned and get out.
* If not, adjust pgsz up to the next 4MB boundary
* and continue.
*/
x = PPN(*table);
if(x != pa)
panic("mmukmap1: pa %luX entry %luX\n",
pa, *table);
x += 4*MB;
if(pae <= x){
pa = pae;
break;
}
pgsz = x - pa;
pa += pgsz;
va += pgsz;
continue;
}
else{
/*
* Little page. Walk to the entry.
* If the entry is valid, set pgsz and continue.
* If not, make it so, set pgsz, sync and continue.
*/
pte = mmuwalk(mach0->pdb, va, 2, 0);
if(pte && *pte & PTEVALID){
x = PPN(*pte);
if(x != pa)
panic("mmukmap2: pa %luX entry %luX\n",
pa, *pte);
pgsz = BY2PG;
pa += pgsz;
va += pgsz;
sync++;
continue;
}
}
}
/*
* Not mapped. Check if it can be mapped using a big page -
* starts on a 4MB boundary, size >= 4MB and processor can do it.
* If not a big page, walk the walk, talk the talk.
* Sync is set.
*
* If we're creating a kernel mapping, we know that it will never
* expire and thus we can set the PTEGLOBAL bit to make the entry
* persist in the TLB across flushes. If we do add support later for
* unmapping kernel addresses, see devarch.c for instructions on
* how to do a full TLB flush.
*/
if(pse && (pa % (4*MB)) == 0 && (pae >= pa+4*MB)){
*table = pa|PTESIZE|PTEWRITE|PTEUNCACHED|PTEVALID;
if((va&KZERO) && m->havepge)
*table |= PTEGLOBAL;
pgsz = 4*MB;
}
else{
pte = mmuwalk(mach0->pdb, va, 2, 1);
*pte = pa|PTEWRITE|PTEUNCACHED|PTEVALID;
if((va&KZERO) && m->havepge)
*pte |= PTEGLOBAL;
pgsz = BY2PG;
}
pa += pgsz;
va += pgsz;
sync++;
}
iunlock(&mmukmaplock);
/*
* If something was added
* then need to sync up.
*/
if(sync)
mmukmapsync(ova);
return pa;
}
void*
vmap(ulong pa, int size)
{
pa = upamalloc(pa, size, 0);
if(pa == 0)
return nil;
return KADDR(pa);
}
void
vunmap(void *va, int size)
{
if(va != nil)
upafree(PADDR(va), size);
}
int
segflush(void*, ulong)
{
return 0;
}
|